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Abstract

A vertical chain of rising bubbles represents a transition from individual to continuum behaviour in a
compressible gas–liquid flow. Experiments on the distribution of acoustic pressure around a bubble chain
revealed a strong anisotropy in the acoustic field in the frequency band generated by individual bubbles.
Sound appeared to propagate much more efficiently along the chain than normal to it. A simple theoretical
model using a linear coupled-oscillator approximation was developed to explain this result. Although
comparison with experiments is inherently qualitative, the model clearly demonstrated the anisotropy. The
model also reproduced the change in pulse waveform along the chain. The results suggest that the
enhancement of sound intensity along the chain can to some extent be explained by bubbles acting as
resonant amplifiers re-transmitting vibrations.
r 2003 Richard Manasseh. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Sounds emitted by bubbles have been studied quantitatively since the time of Rayleigh [1]. A
good review of bubble acoustics was made by Leighton [2]. Bubbles produce an acoustic signal
owing to compression of the gas in the bubble. The ‘spring’ of the compressible gas and the mass
of liquid around the bubble create a natural oscillator, sending a pressure fluctuation through the
liquid. For a bubble detaching from a parent body of gas, the initial compression or rarefaction of
the gas may be caused by the recoil of the bubble neck on formation, or by deformation of the
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bubble during its motion, although the mechanism of either process is still the subject of research
[3,4]. Under adiabatic conditions, the natural frequency of a single, millimetre-sized, linearly
oscillating bubble is given by [5]

o0 ¼

ffiffiffiffiffiffiffiffiffiffi
3gP0

rR2
0

s
; ð1Þ

where o0 is the radian frequency, g is the ratio of specific heats, P0 is the absolute liquid pressure,
r is the liquid density and R0 is the equivalent spherical radius of the bubble. The Minnaert
equation (1) is a simplified solution to the general equation for spherical bubble oscillations
usually called the Rayleigh–Plesset equation [2]. A 6 mm diameter bubble, such as the ones
studied here, has a natural frequency of about 1 kHz:

The acoustic behaviour of pairs of bubbles, mostly under the influence of an applied sound
field, has been the subject of significant research (e.g. Refs. [6–11]). Much of this work is directed
to predicting the relative motion of pairs of acoustically driven bubbles.

The acoustics of clouds or ‘swarms’ of bubbles, where the number of bubbles is large enough
for the ensemble to be treated by a continuum approximation, has likewise been extensively
researched (e.g. Refs. [12–16]).

The fluid dynamics of a single chain of rising bubbles has been studied by several authors (e.g.
Refs. [17,18]), without considering its acoustics. As the number of bubbles in the chain becomes
large, and certainly once multiple chains are introduced side-by-side, the system becomes more
like a ‘cloud’ than a ‘chain’. In the limit of large numbers of bubbles, a continuum acoustic theory
(e.g. Ref. [15]) should become valid.

Considering briefly the continuum limit, a small quantity of gas has a dramatic influence on the
‘averaged’ speed of sound of the medium. It is easy to show that when the void fraction reaches
50%, the speed of sound cm of an ‘averaged’ medium drops to only 25 m s�1; lower than the speed
of sound in air. A laboratory tank inevitably places top and bottom boundaries on a bubble
cloud, permitting wave modes of the entire cloud with wavelengths l on the order of the tank
height. Although individual millimetre-sized bubbles have acoustic frequencies in the order of
1000 Hz; a bounded ‘averaged-medium’ cloud in a tank a quarter-metre high would have
frequencies of its lower modes in the order of cm=l; which could be as low as 100 Hz: Thus, when
there are a very large number of bubbles in a laboratory tank, an anisotropy in the sound field at
frequencies of order 100 Hz should be expected. Such an anisotropy would correspond to the
mode structure of the bounded cloud and was clearly demonstrated by Nicholas et al. [15].
However, the sound distribution around a chain of a finite number of bubbles has not been
studied.

The acoustic behaviour of a bubble chain is of particular interest for feedback measurements of
industrial aerators [19–21] and for the emission of sound by submarines [22].

This paper investigates a transition from individual bubble-acoustic behaviour to continuum
behaviour, using a single chain of bubbles as the paradigm. Frequencies in the bandwidth of the
individual bubble resonances, of order 1000 Hz; were investigated. Experiments presented in
Section 2 demonstrate an anisotropic sound distribution for a low number of bubbles in a chain,
at frequencies around 1000 Hz: In Sections 3 and 4 a simple coupled-oscillator model is developed
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to try to explain the data from the experiment. In Section 5 the model and experiment are
compared and contrasted.

2. Experiments

The experimental set-up is shown in Fig. 1. A chain of air bubbles was produced in water by a
highly repeatable system similar to that of Manasseh et al. [4]. The number of bubbles in the chain
was varied systematically. Further details are in Ref. [23]. The nozzle had a 5:00070:025 mm
internal orifice diameter; it was supplied with air via a precision pressure regulator (CompAir
Maxam type A216) at about 13:0 kPa pressure. Small variations of about 70:5 kPa were
sufficient to establish steady and repeatably different bubble production rates. The nozzle was
machined to maintain its edge as sharp as possible; this ensured a known contact radius for the
forming bubbles. The nozzle orifice used for bubble production was 0.55 m below the water
surface. The typical appearance of the bottom of the chain is shown in Fig. 2.

No external acoustic forcing was applied. The newly formed bubble at the base of the chain
emitted a pulse of sound as it detached [4]. Such pulses die off over 10–20 ms; whereas the time
interval between the bubble-formations creating the pulses was more than 50 ms:

A fixed hydrophone (Fig. 1) detecting the pulse from the newly formed bubble (the generator of
the sound) triggered signal acquisition from a traversing hydrophone, ensuring the same pulse
initiated signal acquisition in both near and far fields. The signal from the fixed hydrophone was
used as the trigger because the signal near the nozzle is highly repeatable under these conditions
[4]. Pairs of such keyed pulse waveforms from several points in a vertical plane were recorded.

Initial tests determined the optimal dimensions of the tank. The sound of a single bubble was
measured in different-sized rectangular and cylindrical tanks. For very small tanks (0:1 m or less
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Fig. 1. Schematic of the experimental set-up. (1) fixed hydrophone and (2) traversing hydrophone.
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in horizontal dimension) the size of the tank clearly influences the signal; and cylindrical-section
tanks can significantly distort the signal, perhaps owing to focusing. A rectangular tank with
negligible influence on the sound signal was selected. It was 0:88 m� 0:33 m in plane and 0:65 m
deep. This tank was large enough for the results to appear independent of tank size, and tests in an
even larger tank confirmed this. However, the only way to eliminate any influence of the tank
walls is to make measurements in an unbounded domain; such experiments are currently planned.
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Fig. 2. Bubble chain at 8 Hz production rate.
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Br .uel & Kjaer type 8103 hydrophones were used for the fixed and traversing measurements. At
the frequencies studied, this hydrophone type has an essentially spherical directivity field, ensuring
sounds from any direction are equally transduced. The two hydrophone signals were pre-
amplified by Br .uel & Kjaer type 2635 charge amplifiers set to the individual calibrations of the
hydrophones. The signals were band-pass filtered between 3 Hz and 10 kHz by a Stanford Digital
SR560 filter. Acoustic pressures were digitized as transduced voltage by a National Instruments
Data Acquisition Card type 6024E using the StreamTone (TM) software, which is built on the
National Instruments LabView platform.

The acoustic centre of the fixed hydrophone was at a horizontal distance of 60 mm from the
nozzle axis and in the vertical it was level with the plane of the nozzle orifice. This position was
maintained for all of the experiments while the bubble-production rate (BPR) was varied. The
traversing hydrophone was positioned on a 7� 6 grid (60 mm grid spacing) in the vertical plane
containing the nozzle axis.

Several pulses, typically 30–40, were acquired from the hydrophones at each grid point. The
data could then be averaged and re-combined in several different ways to give a picture of the
acoustic field around the bubble chain [23].

The number of bubbles in the chain was varied from 1 to approximately 30 by varying
the air pressure in the nozzle. This increases the airflow rate, thereby producing bubbles
more rapidly. The bubbles also increase in size, but most of the additional volume flow is
achieved by increases in BPR [24]. Since bubbles rise at approximately the same speed
for the bubble size range generated [25], increases in BPR increase the number of bubbles
in the chain. As air flow was increased, the amplitude of the sound pulse measured by
the fixed hydrophone at each bubble’s formation rose from 1 Pa for 0:5 Hz BPR to 16 Pa for
18 Hz BPR.

The size of the bubbles was measured acoustically with (1) using the first-period method
(Manasseh, [26]) but also checked visually to ensure (1) gave a reasonable prediction. Bubble size
increased from an equivalent spherical radius R0 of 2:6070:11 mm for 0:5 Hz BPR, to
4:1070:12 mm for 18 Hz BPR. The spacing between adjacent bubble centres, s; was measured
photographically. The average spacing decreased from 0:55 m for 0:5 Hz (effectively, a single
bubble in the tank depth) to about 0:017 m (about 30 bubbles) for 18 Hz: Data were recorded for
bubble production rates of 8, 10, 13, 16 and 18 Hz:

A single bubble in the present experiment produces the classic ‘impulse-response’ exponentially
decaying oscillation observed by experimentalists since Minnaert [5]. The oscillation amplitude
decays from a maximum occurring in the first acoustic cycle or so. As the number of bubbles in
the chain increases from one, interesting variations appear in the shape of the pulse, and these are
quite repeatable up to the BPR where bubbles begin to pair [27]. Waveforms of typical pulses at
the bottom of the chain are shown super-imposed in Fig. 3 to illustrate the repeatability of the
experiment. The data are for 41 non-consecutive pulses. Random variations ‘smudging’ the super-
imposition appear only after 10 or more cycles. The same data are shown averaged together in
Fig. 4. The peaks have been reduced owing to the averaging, but the form is the same. It can be
seen that there is an initial ‘spike’ with the maximum occurring in the first cycle or so, then a rapid
‘decay’ with some modulation. At different BPR, the severity of the decay or modulation can
change. Nonetheless, at the bottom of the chain, there is always the same basic ‘impulse-response’
appearance.
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There is an important contrast with the waveforms high up the chain, shown superimposed in
Fig. 5 and averaged in Fig. 6. Here, the pulse amplitude builds up to a maximum over about half a
dozen cycles, then gradually decays; and the waveform has the clear appearance of being
modulated.
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Fig. 3. Experimental pressure pulses at bottom of the chain (nozzle orifice depth) at 8 Hz BPR. Super-imposition of 41

pulses.

Fig. 4. Experimental pressure pulse at bottom of the chain (nozzle orifice depth) at 8 Hz BPR. Average of 41 pulses.
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The profiles of r.m.s. pressure ðPr:m:s:Þ along horizontal and vertical lines are shown in Figs. 7
and 8, respectively. Each point is Pr:m:s: calculated over 25 ms for each pulse, and averaged over
the pulses from 30 to 40 non-consecutive bubbles. The vertical profile of Pr:m:s: clearly shows much
higher intensities up the chain than the same distance horizontally away. The equivalent
horizontal and vertical profiles for a single bubble appeared identical within the measurement
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Fig. 5. Experimental pressure pulses at top of the chain (0:36 m above nozzle) at 8 Hz BPR. Super-imposition of 41

pulses.

Fig. 6. Experimental pressure pulse at top of the chain (0:36 m above nozzle) at 8 Hz BPR. Average of 41 pulses.
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errors. Thus, the acoustic field around a bubble chain can be described as anisotropic, and the
effect increases as bubble production rate increases. Although Pr:m:s: does fall off with vertical
distance from the source, the drop in the vertical is much less than that over the equivalent
distance in the horizontal. This will be discussed in Section 5.
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Fig. 7. Experimental radial Pr:m:s: along a horizontal line at the nozzle depth. Profiles are for 8, 10, 13, 16 and 18 Hz

BPR. Each point is average of Pr:m:s: for 30–40 bubbles. Single-bubble Pr:m:s: were calculated over 9 ms; exaggerating
their relative magnitude, whereas all other Pr:m:s: were calculated over 25 ms:

Fig. 8. Experimental vertical Pr:m:s: along a vertical line 0:06 m from the nozzle axis. Profiles are for 8, 10, 13, 16 and

18 Hz BPR. Each point is average of Pr:m:s: for 30–40 bubbles. Single-bubble Pr:m:s: were calculated over 9 ms;
exaggerating their relative magnitude, whereas all other Pr:m:s: were calculated over 25 ms:
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The vertical profile shows a significant separation between the profiles for different bubble
production rates, with Pr:m:s: increasing for higher BPR. This increase with BPR is also present in
the horizontal profile, but is not so great.

In tests where the bubbles were formed near the tank centre, so sound could be measured below
the bottom of the chain, the sound fell off very rapidly with vertical distance below the nozzle.

3. Coupled-oscillator theory

3.1. Formulation

The bubbles are assumed to lie on the z-axis of an axisymmetric cylindrical co-ordinate system
(r; z) with z pointing downwards from the free surface. This assumption creates a fundamental
inconsistency in co-ordinate systems, since the bubbles are assumed to be spherically symmetric
(monopole) oscillators, while generating motions in the cylindrical frame. Provided the bubbles do
not get too close, the inconsistency can be tolerated. As a consequence, this coupled-oscillator
model, like some predecessors (e.g. Refs. [7,11]), cannot be considered mathematically rigorous.
Analyses that could be combined to make a more thorough model are detailed elsewhere (e.g.
Refs. [3,28,29]). Following straightforward derivations, the equations actually used in the present
model for an arbitrary number of bubbles in a chain turn out similarly to those used previously
for pairs of bubbles. In fact, any coupled mass–spring system is represented by similar equations.

Typical assumptions for millimetre-sized bubbles are that the gas is ideal with polytropic index
k; and that surface tension and vapour pressure effects are negligible. Then the gas pressure inside
the ith bubble, PGiðtÞ; is simply given by PGi ¼ P0iðR0i=RiÞ

3k where R0i is the equilibrium radius of
the bubble, RiðtÞ is its time-dependent radius, and the absolute pressure including the hydrostatic
head, P0i; is given by P0i ¼ Patm þ rgdi; where di is each bubble’s depth. The pressure in the liquid
just outside the bubble, piðtÞ; is assumed to be given by

pi ¼ PGi � bi
’Ri þ

X
jai

p0j
R0j

sji

; ð2Þ

where the spacing between the centres of bubbles i and j is denoted sji; the damping is represented
by bi; and the sum p0

jðR0j=sjiÞ accounts for the pressure perturbations p0j of all the other bubbles,
monopole in form and linearly superposed. The perturbations are given by

p0
i ¼ PGi � bi

’Ri � P0i:

A small-amplitude assumption, RiðtÞ ¼ R0i � diðtÞ; di{R0i; together with a small-velocity
assumption, linearizes the Navier–Stokes equation for the liquid motion between neighbouring
bubbles. Making consistent assumptions gives an approximate damping term Bi; given by Bi ¼
ð4Z=R0iÞ þ ðro2

0i=cÞR2
0i; where Z is the liquid dynamic viscosity, o0i is given by Eq. (1) and c is the

speed of sound in the liquid.
The foregoing assumptions transform the Navier–Stokes equation for the liquid motion to a set

of linearly coupled equations

.di þ bi
’di þ o2

0idi ¼ �
X
jai

R2
0j=R0i

sji

ðo2
0jdj þ bj

’djÞ; ð3Þ
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where bi ¼ Bi=ðrR0Þ: For identically sized bubbles (3) becomes

.di þ bi
’di þ o2

0idi ¼ �
X
jai

R0

sji

ðo2
0jdj þ bj

’djÞ: ð4Þ

These are the coupled-oscillator equations actually used in the model. It should be noted that the
coupling in the present model is due to the monopole super-imposition of the pressures from the
other bubbles. In contrast to some other models (e.g. Ref. [11]), in the present model there are no
coupling terms arising from the velocity fields of neighbouring bubbles. These were eliminated
once boundary conditions on the top and bottom of the chain were imposed.

3.2. Simple case of two bubbles

The effectiveness of the model can only ultimately be tested by comparison with experiment;
however, some physical insight can be gained by considering a simple two-bubble case first. For a
pair of identical bubbles at the same depth so they have the same resonant frequency o0 and
damping b; (4) becomes

.d1 þ b’d1 þ o2
0d1 ¼ �

R0

s
ðo2

0d2 þ b’d2Þ; ð5Þ

.d2 þ b’d2 þ o2
0d2 ¼ �

R0

s
ðo2

0d1 þ b’d1Þ; ð6Þ

where s is the distance between the centres. Anticipating a solution in the form of two eigenmodes,
defining new variables x ¼ d1 � d2 and w ¼ d1 þ d2 and adding and subtracting (5) and (6) gives

.xþ 1�
R0

s

� �
b’xþ 1�

R0

s

� �
o2

0x ¼ 0; ð7Þ

.wþ 1þ
R0

s

� �
b’wþ 1þ

R0

s

� �
o2

0w ¼ 0: ð8Þ

The first, low-frequency eigenmode x has, in the absence of damping, a frequencyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� R0=sÞ

p
o0; while the second, high-frequency mode w resonates at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ R0=sÞ

p
o0:

Once the model has been simplified to this extent, it has the same basic form as any of the
models already proposed for two coupled bubble oscillators (e.g. Ref. [11]). There are two modes
with frequencies a1o0 and a2o0; where a1 and a2 depend on the spacing s=R0: As s=R0-N; the
eigenfrequencies tend to o0 and as s=R0-Oð1Þ; the eigenfrequencies diverge. For example, Hsiao

et al. [11] calculate that the two modes have inviscid frequencies o0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R0=s

p
and

o0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R0=s

p
: It is straightforward to show that the difference in functional form of the

eigenfrequencies between the present model and Hsaio et al.’s model arises from the fundamental
difference in assumptions, not from any details of the derivation. If inertia terms corresponding to
the velocity fields are included in the present model, it results in exactly the same eigenfrequency
relations that Hsaio et al. obtain for the simple two-bubble case.
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It can be seen from (7) and (8) that the low-frequency eigenmode has lower damping than the
high-frequency eigenmode. This is consistent with general physical intuition, where low-frequency
oscillations generally survive longer. Moreover, it suggests that if bubbles in a chain were hit by
some impulse that excited multiple modes, the resulting pulse would decay with a frequency that
would change with time. The pulse frequency would get lower as the higher-frequency modes died
off, leaving the lower ones. Beats between the modes should be expected, modulating the pulse
amplitude. A fall in the pulse frequency with time and modulations to its amplitude were observed
by Manasseh [26] for a chain of bubbles formed from a nozzle.

4. Numerical method, settings and issues

The experimental signals show interesting phenomena inherently observed in the time domain,
such as the modulation of the pulse produced on bubble formation, its decay, and the variation in
pulse waveform at different heights up the chain. Thus, it is of interest to make a comparison with
the model’s predictions in the time domain. A set of N eigenmodes from a linear solution to (4)
would not be useful, since the initial condition of each mode would have to be known.

In reality, the physical impulse exciting the bubble chain is, from the experiments of Manasseh
et al. [4] and Section 2, the formation of the bubble at the nozzle. A jet penetrating the newly
detached bubble was thought to provide the actual impulse initiating the acoustic oscillation.
Translating this physical, three-dimensional impulse into an initial condition for the model is not
simple, since the actual bubble-wall velocity, radius or internal pressure perturbation due to the
impulse have not yet been measured. Nonetheless it is thought a more realistic and expedient test
of the model to represent the impulse as a perturbation to the newly formed bubble, rather than
attempting to project the impulse onto the set of eigenmodes.

Therefore the model was evaluated by simply integrating the coupled Eq. (4) forward in time.
Settings for the model are shown in Table 1. Bubble sizes were set to those measured in the
experiment for the same BPR. All parameters such as liquid density and viscosity, atmospheric
pressure, gas compressibility, etc., were set to correct physical values. The number of bubbles, N;
was based on the actual number in the chain at each experimental BPR, which was measured from
photographs such as Fig. 2.

A fixed-timestep fourth order Runge–Kutta scheme was used. The model was first tested by
checking it reproduced the ‘beating’ frequency between the two modes predicted for the simple
two-bubble system in Section 3.2.
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Table 1

Settings for the model based on experimental data

Experimental BPR (Hz) 0.5 — — 8 10 12 16 18

Number of bubbles 1 2 5 16 19 21 27 30

Separation (mm apart) — 250.0 100.0 32.1 24.9 27.1 19.4 17.4

Bubble diameter (mm) 5.21 5.21 5.21 7.00 7.00 7.51 7.85 8.22

Perturbation ðmm s�1Þ 4.00 4.00 4.00 15.0 15.0 16.1 16.8 17.6

The separation is between bubble centres. The two and five bubble cases were only done numerically.
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An initial perturbation in velocity, radius or pressure was applied to the newly formed bubble
only: the bubble at the bottom of the chain. Equivalent perturbations in velocity, radius or
pressure gave equivalent results as expected; and the results presented below are for a
perturbation in velocity. (In future experimental work, it is anticipated that velocity would be
easier to measure, by Particle-Image Velocimetry for example.)

In the absence of experimental information, the velocity perturbation was chosen to give the
same pressure perturbation peak measured in the experiment, at the same measurement location.
This setting of the initial condition was only done for the single-bubble case and for one bubble
production rate, the lowest ð8 HzÞ: As the experimental bubble production rate was increased, the
magnitude of the peak pressure increased. As noted in Section 2, this may be due to the bubbles
becoming larger, but they may also suffer proportionally larger perturbations at higher BPR. For
BPR greater than 8 Hz; the velocity perturbation for the model was simply increased in
proportion to the bubble size. This ignored the possibility of proportionally larger perturbations
at higher BPR and the consequences will be discussed in the next section.

In reality, the bubbles are not equally spaced along the chain (Fig. 2). In particular, the first two
or three bubbles are slightly closer, probably because some time is required for them to accelerate
to a terminal velocity. Furthermore, bubbles higher up the chain form a spiral trajectory,
departing from the assumed linear chain. Even if bubbles remained in-line, transfers of
momentum due to the bubble wakes would cause non-uniform spacings of bubbles [18]. For the
model, the bubbles were assumed to be equally spaced at the average of the spacings measured
experimentally for each production rate.

Bubbles several millimetres in diameter only appear spherical immediately after formation.
Once they have risen a few diameters, they become quite distorted (Fig. 2). This will change their
resonant frequency slightly [30]. This would have the effect of ‘detuning’ the coupled oscillators, a
further complication also not treated by the present model.

5. Comparison of model and experiment

Figs. 9 and 10 show the coupled-oscillator model’s prediction of the pressure that would be
measured by a hydrophone placed at the bottom and top of the chain, respectively. The model
measured pressure pmðtÞ is the sum of the pressures piðtÞ in the liquid at each bubble wall, reduced
according to the monopole assumption,

pm ¼
XN

i¼1

pi
R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðz � diÞ
2

q ; ð9Þ

where ðr; zÞ is the measurement point of interest. Figs. 9 and 10 should be compared with Figs. 4
and 6, respectively, for the experiment. Given the numerous approximations discussed above in
Sections 3 and 4, the time series could not be expected to match well. Nonetheless, the key features
of each waveform are correctly predicted. At the bottom of the chain, there is an initial sudden
spike, then a rapid drop in signal magnitude over the first few cycles, then a recovery in the form
of a modulation. High up the chain, there is no sharp start to the pulse, rather a gradual buildup
to a modulated signal. (The amplitude appears higher in the model simply because the model
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perturbation was set to reproduce the experimental peaks, and in Figs. 4 and 6 the peaks have
been diminished by averaging—compare Figs. 9 and 3.)

The difference in signals can now be understood, particularly if the behaviour of the coupled-
oscillator model is systematically studied as the number of bubbles is increased. Initially, only the
newly formed bubble at the bottom is perturbed. However, all the other bubbles, while initially at
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Fig. 10. Model pressure pulse pm at top of the chain (0:36 m above nozzle), for 8 Hz bubble production rate (N ¼ 16).

Fig. 9. Model pressure pulse pm at bottom of the chain (nozzle orifice depth), for 8 Hz bubble production rate

(N ¼ 16).

R. Manasseh et al. / Journal of Sound and Vibration 278 (2004) 807–823 819



equilibrium, are ‘hungry parasites’; ready to absorb energy from the perturbed bubble, since they
have been initialized at the same size. The other bubbles in the model have almost the same
resonant frequency, which differ only from the slight variations in P0 due to their different depths.
Hence, energy is rapidly absorbed from the newly formed bubble and re-distributed to the others.
The result is that the pressure measured at the bottom, which is dominated by the pressure of the
newly formed bubble, shows a rapid drop from the initial spike. The perturbation will excite a
mixture of the N modes of the chain, which will interact causing a modulation as the modes beat
against each other. Higher up the chain, the signal amplitude begins very low since the signal there
is dominated by bubbles initially at equilibrium. Then, as the energy is transferred eventually to
the topmost bubble, the signal envelope picks up with the modulation shown in Fig. 10.

The model’s prediction of Pr:m:s: is shown in Figs. 11 and 12. It can be seen that the vertical
profile of r.m.s. pressure is quite level once there are more than Oð1Þ bubbles. In contrast, the
horizontal profile decays in a 1=r manner as would be expected for a single bubble.

Thus, the model reproduced the same basic anisotropy as the experiment (Figs. 7 and 8).
Notably, the experimental vertical profile of Pr:m:s: does fall off with distance, whereas the model
does not show this. The experimental drop in Pr:m:s: in the vertical may be due to factors such as
the shape-distortions of the bubbles and the spiralling and irregular behaviour which become
more marked higher up the chain.

The transition from single-bubble to multiple-bubble behaviour can also be seen in Fig. 8. In
addition to profiles for the number of bubbles in the experiment, profiles are plotted for one, two
and five bubbles in the chain. For one, two and five bubbles, the perturbation was made equal so
the profiles could be readily contrasted. The two-bubble profile shows an obvious ‘bump’ at the
location of the second bubble, which picked up some energy from the newly formed bubble at the
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Fig. 11. Model radial r.m.s. pressure along a horizontal line at the nozzle depth. Profiles for 8, 10, 13, 16 and 18 Hz

BPR are for perturbations proportional to experimental bubble radii. Single, two and five bubble profiles at the same

perturbation as 8 Hz BPR.
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bottom. However, with five bubbles, the energy was distributed to four ‘parasite’ bubbles, and it is
clear that the Pr:m:s: in the vicinity of the newly formed bubble is significantly diminished as a
consequence. Interestingly, the Pr:m:s: profile for 8 Hz is higher than that for 10, 13 and 16 Hz:
Examining the waveforms indicates a more rapid loss of amplitude for 10, 13 and 16 Hz; which
resulted in a lower average pressure amplitude.

As noted in Section 2, the experimental vertical Pr:m:s: profiles increase significantly with BPR.
While this is also noticeable in the horizontal profiles, the effect is much more marked in the
vertical profiles. This increase of the profiles is not found in model results, and in the case of the
8 Hz production rate the opposite trend was noted. Recalling that the model perturbations for
8–18 Hz BPR were simply set proportionally to the bubble size, this implies that in reality the
perturbation increases more rapidly with BPR than the bubble size. By setting the model initial
conditions appropriately, the shifts in experimental profiles could have been mimicked, but that
would give a misleading impression of the model’s capability. Overall, the experimental
observation suggests that the anisotropy is enforced as BPR increases and brings bubbles closer
together.

The experimental vertical Pr:m:s: profiles show a peak at the second measurement height. This
may be because in reality the initial perturbation, although generated by the newly formed bubble
at the bottom, also initially excites the nearby bubbles.

6. Conclusion

Experiments on the distribution of acoustic pressure around a bubble chain revealed a strong
anisotropy in the acoustic field. Sound appeared to propagate much more efficiently along the
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Fig. 12. Model vertical r.m.s. pressure along a vertical line 0:06 m from the nozzle axis. Profiles for 8, 10, 13, 16 and

18 Hz BPR are for perturbations proportional to experimental bubble radii. Single, two and five bubble profiles at the

same perturbation as 8 Hz BPR; gradient discontinuity at z ¼ 0 is because Pr:m:s:p1=
ffiffi
ð

p
z2 þ ð0:06Þ2Þ; not 1=z2:
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chain than normal to it. The phenomenon was present in the resonant frequency band of
individual bubbles. This may have relevance to the distribution of underwater sound generated by
bubbles streaming from a vessel’s hull or caught in its wake. It may also be relevant to the acoustic
measurement and control of industrial bubbly flow systems, in which sound may be measured far
from its source.

A simple theoretical model using a linear coupled-oscillator approximation of the chain was
evaluated. The model qualitatively reproduced the change in pulse waveform along the chain.
Most significantly, despite its simplifications, the model also qualitatively predicted the anisotropy
in the acoustic field. However, the comparison remains qualitative, limited by ignorance on the
true initial conditions in the experiment, as well as by the simplifications inherent in the model.
The results suggest that the enhancement of sound intensity along the chain can to some extent be
explained by bubbles acting as resonant amplifiers re-transmitting vibrations.

Future theoretical work should address the limit as the number of bubbles becomes large,
possibly by using a continuum-based model. The coupled-oscillator model should be extended to
include bubble rise velocities. Experiments or numerical simulations should be made to determine
the true initial conditions of the newly formed bubbles. Experiments should also be made in an
unbounded domain to assess the influence of walls.
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